Large margin classifiers based on affine hulls
نویسندگان
چکیده
منابع مشابه
Large margin classifiers based on affine hulls
This paper introduces a geometrically inspired large-margin classifier that can be a better alternative to the Support Vector Machines (SVMs) for the classification problems with limited number of training samples. In contrast to the SVM classifier, we approximate classes with affine hulls of their class samples rather than convex hulls. For any pair of classes approximated with affine hulls, w...
متن کاملAdaptively Weighted Large Margin Classifiers.
Large margin classifiers have been shown to be very useful in many applications. The Support Vector Machine is a canonical example of large margin classifiers. Despite their flexibility and ability in handling high dimensional data, many large margin classifiers have serious drawbacks when the data are noisy, especially when there are outliers in the data. In this paper, we propose a new weight...
متن کاملPerceptron-like large margin classifiers
We consider perceptron-like algorithms with margin in which the standard classification condition is modified to require a specific value of the margin in the augmented space. The new algorithms are shown to converge in a finite number of steps and used to approximately locate the optimal weight vector in the augmented space following a procedure analogous to Bolzano’s bisection method. We demo...
متن کاملFace detection using large margin classifiers
Large margin classifiers have demonstrated their advantages in many visual learning tasks, and have attracted much attention in vision and image processing communities. In this paper we apply and compare two large margin classifiers, Support Vector Machines and Sparse Network of Winnows, to detect faces in still gray scale images. Furthermore, we study the theoretical frameworks of these classi...
متن کاملMultiplicative Updates for Large Margin Classifiers
Various problems in nonnegative quadratic programming arise in the training of large margin classifiers. We derive multiplicative updates for these problems that converge monotonically to the desired solutions for hard and soft margin classifiers. The updates differ strikingly in form from other multiplicative updates used in machine learning. In this paper, we provide complete proofs of conver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2010
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2010.06.018